NSRL Fault Studies - Goals - Layout - Fault Studies - Results - Conclusions ## Fault Study Goals - ❖ Determine whether design provides adequate radiation protection for routine operation. - ❖ Determine whether design provides adequate radiation protection to personnel during various faults. - ❖ Determine whether the choice of monitor locations is optimum. - ❖ Determine whether the monitors can be used to limit highintensity protons delivery into NSRL. ### Fault Conditions, protons - ❖ 2 GeV, 6x10¹⁰/5.4 sec - 1. D6 Septum Magnet. - 2. Gate Valve in the Stub Tunnel at the Head Wall. - 3. RD1/RD2 Magnet (20° bend) - 4. Beam Pipe near the berm penetration - 5. Gate Valve past the berm penetration - 6. Thick Target in the target room - 7. Beam Dump (Routine Operation) - Surveyed the berm, the fence, building 957 at the penetration, labyrinth entrances. # NSRL Layout #### Results - The only dose observable with the hand-held instruments occurred in building 957 at the penetration, during the beam-pipe fault: 0.2 mrem/hour. - Other measurements were made with the fixed monitors (chipmunks). # Trip Rates (2 GeV protons) | | D1/D2 | Beam
Pipe | Gate
Valve | Thick
Target | Beam
Dump | |-------|---------------------------------|--|--------------------------------|-----------------------------------|--------------------------------| | NM130 | | 1 | | | 1 | | NM131 | | | 4 X 10 ¹¹ /s | 3.8 X 10 ¹¹ / s | 5 X 10 ¹¹ /s | | NM132 | 8.8 X 10 ¹⁰ / | 1.8 X 10 ¹¹ / _S | | V | 4 X 10 ¹² /s | ### Rates During High Intensity Fault (3.7 GeV protons at 10¹⁴/s) | | D1/D2 | Beam
Pipe | Gate
Valve | Thick
Target | Beam
Dump | |-------|-----------|--------------|---------------|-----------------|--------------| | NM130 | | | | 5.0 rem/h* | 5.0 rem/h* | | NM131 | | | 1.0 rem/h | 11.4 rem/h | 2.5 rem/h | | NM132 | 5.2 rem/h | 2.5 rem/h | 63 mrem/h | 63 mrem/h | 63 mrem/h | ^{*} Estimated, not measured ## Dose During 5 second High Intensity Fault | | D1/D2 | Beam
Pipe | Gate
Valve | Thick
Target | Beam
Dump | |-------------------------|------------|--------------|---------------|-----------------|--------------| | Upstream
Labyrinth | 7.2 mrem | 3.5 mrem | 0.1 mrem | 0.1 mrem | 0.1 mrem | | Building 957 | | 1.18 mrem | | | | | Fence | 1.6* mrem | | Berm | 25.7* mrem | | Downstream
Labyrinth | <0.8 mrem | <0.8 mrem | 0.8 mrem | 15.8 mrem | 0.05 mrem | #### Conclusions - Design appears to be adequate for routine operation. - Protection under fault conditions is adequate. - * Chipmunks NM131 and NM132 in appropriate locations, and are set to appropriate trip levels. They will interlock at reasonable levels and will prevent multiple-spill high intensity faults in NSRL. - * Chipmunk NM130 will move to a location above midtunnel.